Value of assessment of pretest probability of deep-vein thrombosis in clinical management

Summary
Background When ultrasonography is used to investigate deep-vein thrombosis, serial testing is recommended for those who test negative initially. Serial testing is inconvenient for patients and costly. We aimed to assess whether the calculation of pretest probability of deep-vein thrombosis, with a simple clinical model, could be used to improve the management of patients who present with suspected deep-vein thrombosis.

Methods Consecutive outpatients with suspected deep-vein thrombosis had their pretest probability calculated with a clinical model. They then underwent compression ultrasound imaging of proximal veins of the legs. Patients at low pretest probability underwent a single ultrasound test. A negative ultrasound excluded the diagnosis of deep-vein thrombosis whereas a positive ultrasound was confirmed by venography. Patients at moderate pretest probability had a positive ultrasound were treated for deep-vein thrombosis whereas patients with an initial negative ultrasound underwent a single follow-up ultrasound 1 week later. Patients at high pretest probability with a positive ultrasound were treated whereas those with negative ultrasound underwent venography. All patients were followed up for 3 months for thromboembolic complications.

Findings 95 (16.0%) of all 593 patients had deep-vein thrombosis; 3%, 17%, and 75% of the patients with low, moderate, and high pretest probability, respectively, had deep-vein thrombosis. Ten of 329 patients with low pretest probability had the diagnosis confirmed, nine at initial testing and one at follow-up. 32 of 193 patients with moderate pretest probability had deep-vein thrombosis, three diagnosed by the serial (1 week) test, and two during follow-up. 53 of 71 patients with high pretest probability had deep-vein thrombosis (49 by the initial ultrasound and four by venography). Only three (0.6%) of all 501 (95% CI 0.1–1.8) patients diagnosed as not having deep-vein thrombosis had events during the 3-month follow-up. Overall only 33 (5.6%) of 593 patients required venography and serial testing was reduced the need for serial ultrasound testing and reduced the rate of false-negative or false-positive ultrasound studies.

Introduction
Since the late 1980s, high-resolution real-time B-mode ultrasonography has been used for the diagnosis of deep-vein thrombosis.1 Many studies have reported sensitivities and specificities for the various ultrasonography imaging modalities to be over 95% for proximal deep-vein thrombosis in symptomatic patients and consequently venous ultrasonography imaging is now widely accepted as the non-invasive test of choice for the diagnosis of deep-vein thrombosis. However, ultrasonography is relatively insensitive to deep-vein thrombosis isolated to the calf.2 Calf deep-vein thrombosis is usually a self-limited condition with a very low risk of pulmonary embolism, but 20% to 30% of calf deep-vein thrombosis may extend to involve the larger more proximal veins, which carry a much higher risk of pulmonary embolism.3 For this reason it is recommended that patients who are initially negative on ultrasound testing have follow-up (serial) tests over the next 7 to 10 days to exclude proximal extension. Two studies involving over 300 patients showed that it was relatively safe to withhold anticoagulants in outpatients with negative serial ultrasound results over 7 days since only 1·3% of these patients developed venous thromboembolic complications over 3-month follow-up periods.4,5 However, serial testing is inefficient and inconvenient for patients, and costly for the health-care system since most patients do not have deep-vein thrombosis on the serial test. Ultrasonography is also limited by false results. In previous studies the positive and negative predictive values of ultrasonography for deep-vein thrombosis were about 94%.5,6

We have previously suggested, on the basis of a large clinical trial, that clinical assessment with a clinical model may overcome the limitations of ultrasonography.7 The positive and negative predictive values of diagnostic tests are dependent on prevalence and thus should differ depending on the probability category. In our previous study we demonstrated the high positive predictive value of ultrasonography in the patients with moderate and high pretest clinical probability and the high negative predictive value in the patients at low probability. Through logistic regression analysis we simplified the original model but we had not prospectively tested the revised model.8 It was our impression that we could safely assess patients with significantly fewer diagnostic tests than the serial approach requires. In this report the simplified model was used in combination with ultrasonography to guide management of patients with suspected deep-vein thrombosis.

Vol 350 • December 20/27, 1997 1795

Departments of Medicine (P S Wells mD, J Bormanis mD, C Clement mD) and Radiology (B Lewandowski mD), University of Ottawa, Ottawa, Canada; and Departments of Medicine (D R Anderson mD, K Sue Robinson mD, L Gray mD) and Radiology (F Guy mD, M Mitchell mD) Dalhousie University, Halifax, Canada

Correspondence to: Dr Philip Wells, Suite 467, 737 Parkdale Avenue, Ottawa, Ontario, K1Y 1J8, Canada
In patients with symptoms in both legs, the more symptomatic leg is used.

Diagnostic approach in outpatients with suspected deep-vein thrombosis (DVT)

Table 1: Clinical model for predicting pretest probability for deep-vein thrombosis

<table>
<thead>
<tr>
<th>Clinical feature</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (treatment ongoing or within previous 6 months or palliative)</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis, or recent plaster immobilisation of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recently bedridden for more than 3 days or major surgery, within 4 weeks</td>
<td>1</td>
</tr>
<tr>
<td>Localised tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Entire leg swollen</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling by more than 3 cm when compared with the asymptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>(measured 10 cm below tibial tuberosity)</td>
<td>1</td>
</tr>
<tr>
<td>Pitting oedema (greater in the symptomatic leg)</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (non-varicose)</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis as likely or greater than that of deep-vein thrombosis</td>
<td>-2</td>
</tr>
</tbody>
</table>

In patients with symptoms in both legs, the more symptomatic leg is used.

Table 1: Clinical model for predicting pretest probability for deep-vein thrombosis

Methods

This study was a prospective cohort trial of outpatients with symptoms and suspected deep-vein thrombosis referred to the Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada, or the Ottawa Civic Hospital, Ottawa, Ontario, Canada. The protocol was approved by the research ethics committees of our institutions. Consecutive patients referred to outpatient clinics or the Radiology Departments with pain or swelling of the lower extremity in whom the diagnosis of deep-vein thrombosis could not be excluded on clinical grounds were eligible for the study.

Patients were enrolled between September, 1994, and September, 1996. The presence of one or more of the following excluded patients from the study: previous episode of objectively documented deep-vein thrombosis or pulmonary embolism; signs or symptoms suggestive of current pulmonary embolism; patients in whom death was imminent; requirement for long-term anticoagulant therapy; age less than 18 years; and geographic location such that follow-up could not be done. Consenting patients were then assessed by one of the study physicians and categorised as being at low, moderate, or high pretest probability for deep-vein thrombosis by the scoring model (table 1). A high score was one of three or more, a moderate score was one or two, and a low score was zero or less. The model was derived from our original study on clinical probability in patients with suspected deep-vein thrombosis. The original clinical data were analysed retrospectively by univariate and stepwise logistic analysis in which the nine significantly associated with deep-vein thrombosis when assessed by stepwise logistic regression. The coefficients of the nine significant variables were rounded off to a value of one for the positive coefficients and −2 for the single negative variable (alternative diagnosis). The sum of the integer values provided a new summary score for each patient (table 1). After the clinical assessment the patient’s probability of death in the following 3 months was estimated as less than 5%, 5% to 25%, or more than 25%. Patients then had immediate ultrasound imaging of the symptomatic leg.

Management of the patients was according to the algorithm outlined in the figure. All patients underwent venous ultrasound imaging from the common femoral vein to the point where the popliteal vein divides into multiple calf veins (calf trifurcation). Lack of vein compressibility was the sole diagnostic criterion for a diagnosis of deep-vein thrombosis. Doppler or colour Doppler could be used to identify the deep venous system. Patients at low pretest probability underwent a single ultrasound test. A negative ultrasound excluded the diagnosis of deep-vein thrombosis whereas a positive ultrasound was confirmed by venography.

Patients at moderate probability with a positive ultrasound were treated for deep-vein thrombosis whereas patients with an initial negative ultrasound had a single follow-up ultrasound 1 week later. Patients at high pretest probability with a positive ultrasound were treated for deep-vein thrombosis whereas those with negative ultrasound had venography. Venography was done as previously described. Ultrasoundography and venography were done by individuals unaware of the pretest probability. All patients with negative ultrasound or venography studies were not treated with anticoagulants and were followed up for 3 months to monitor any development of symptomatic venous thromboembolic complications. Patients were randomly chosen to have their pretest probability determined independently by the study nurse and the study physician to assess the interobserver reliability of the model.

Patients were given a card outlining the signs and symptoms of worsening deep-vein thrombosis and pulmonary embolism and were instructed to contact the physicians if these developed. In addition, all patients were seen or contacted 3 months after the initial evaluation.

We hypothesised that, among patients found by our management plan not to have deep-vein thrombosis the rate of deep-vein thrombosis and pulmonary embolism over 3 months of follow-up would be less than the rate of 1.3% obtained from pooled trials with serial ultrasound in all patients. We anticipated that our management plan would be safer than serial ultrasound due to the identification of high-risk patients with deep-vein thrombosis who have negative ultrasound results. To show with confidence that the risk of venous thromboembolic events over 3 months of follow-up would be low (estimated 0.65% [95% CI 0.10–3.2]), we needed a sample size of 600 patients.

The primary analysis was to be the 95% CI around the rate of
deep-vein thrombosis or pulmonary embolism developing in follow-up in all patients in whom deep-vein thrombosis was excluded by our management strategy. The initial and follow-up venous-thromboembolic-event rates were also to be recorded and analysed in each of the low, moderate, and high probability groups. The difference in rates of thromboembolic events between the three pretest probability groups and comparisons of other proportions were done with a χ^2 test. The interobserver reliability between the two study nurses (LG and CC) and the two principal investigators (PSW and DRA) was determined using a weighted k test.

Results

593 of the 918 patients who were eligible were enrolled. 10 patients refused consent. 315 patients were excluded for the following reasons: 194 because of a previous episode of deep-vein thrombosis or pulmonary embolism; 53 had signs or symptoms suggestive of current pulmonary embolism; 42 were geographically located such that follow-up could not be done; 20 had another disease making life expectancy less than 3 months; and six patients required long-term anticoagulant therapy. The mean age of the patients enrolled was 57.1 (SD=17.0) years; 249 were male and 344 female; the mean duration of symptoms before presentation was 8.9 (SD=10.6) days. Other baseline characteristics are outlined in Table 2.

92 patients had deep-vein thrombosis on initial or serial testing, three developed deep-vein thrombosis during the 3 months of follow-up, in patients in whom deep-vein thrombosis was initially considered not to have deep-vein thrombosis. Of the 16 patients who died during the study seven had a deep-vein thrombosis as a cause of death. Of the 92 patients with deep-vein thrombosis 31 (34%) had pulmonary embolism; 11 (12%) had deep-vein thrombosis and pulmonary embolism; 50 (55%) had deep-vein thrombosis or pulmonary embolism; 2 (2%) had only pulmonary embolism; 1 (1%) had deep-vein thrombosis and no evidence of pulmonary embolism; and 1 (1%) had no evidence of either deep-vein thrombosis or pulmonary embolism. The lower prevalence of deep-vein thrombosis (16%) in our patients with suspected deep-vein thrombosis is not likely to be associated with the lower prevalence of deep-vein thrombosis in our previous work, which was due to our management strategy. The model was simplified after logistic regression analysis and in this study the new model was used in a management strategy which decreased the number of diagnostic tests required in patients with suspected deep-vein thrombosis. As with the original model physicians were able to accurately stratify patients with suspected deep-vein thrombosis.

Table 2: Baseline characteristics of study patients with and without venous thromboembolism

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Venous thromboembolism (n=99)</th>
<th>No venous thromboembolism (n=498)</th>
<th>Total (n=597)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>59.9</td>
<td>56.6</td>
<td>57.1</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>50/45</td>
<td>199/299</td>
<td>249/344</td>
</tr>
<tr>
<td>History of cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean duration of symptoms</td>
<td>6-6</td>
<td>9-4</td>
<td>8-9</td>
</tr>
<tr>
<td>Cases of cancer</td>
<td>37</td>
<td>41</td>
<td>78</td>
</tr>
<tr>
<td>Recent surgery</td>
<td>9</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Immobilisation*</td>
<td>23</td>
<td>50</td>
<td>73</td>
</tr>
</tbody>
</table>

*Includes deep-vein thrombosis on day 41 and 90. †Includes deep-vein thrombosis on day 21 of the 3-month follow-up. The low rate of recurrent venous thromboembolism during the follow-up period is not likely to be associated with the lower prevalence of deep-vein thrombosis (16%) in our patients with suspected deep-vein thrombosis.
study but rather because we determined pretest probability. Determining pretest probability by definition (Bayes theorem) selects the patients most likely to have false-negative results—ie, patients with a high pretest probability of deep-vein thrombosis. When ultrasonography was negative in these patients venography was done. This routine result in less chance of missing deep-vein thrombosis, hence a lower probability of recurrent events.

It has been recommended that patients with symptoms who have positive non-invasive test results should be treated for deep-vein thrombosis while those with negative test results should have the non-invasive test repeated twice in 7 days to detect extending calf-vein thrombi.13,10 However, the serial-testing strategy is costly because most patients who return for repeat testing do not have deep-vein thrombosis.11 Our findings suggest that this approach may be most appropriate for patients with a high pretest probability of deep-vein thrombosis; the value of serial testing is less in patients with moderate pretest probability of deep-vein thrombosis but it is still a safe strategy. Serial testing is unnecessary in patients with a low pretest probability. A negative non-invasive test in patients with a low pretest probability essentially excludes a diagnosis of deep-vein thrombosis, so these patients can be excluded from serial testing. In the previous studies on the serial testing strategy 1 3–4 1 extra hospital visits or tests per patient have been needed.13,10,12 14 A recent study in which a single follow-up ultrasound test was done in initially negative patients decreased the rate to 0·8 visits or tests per patient, but only 0·34 extra visits or tests were required in our study.15 Our study can be compared to these other studies because the exclusion criteria we used were identical to the criteria used in these studies.

Although we hypothesised that patients with a low pretest probability of deep-vein thrombosis should have positive ultrasound results confirmed with venography to avoid unnecessary treatment, the positive predictive value of ultrasound was 82% in this group of patients. It is possible that this good result is due to the small numbers of low-probability patients with positive ultrasound, and perhaps venography should be individualised. We also hypothesised that in the event of negative ultrasound results in patients with high clinical probability the false-negative rate with ultrasonography would be substantial and that negative ultrasound results should be confirmed with venography. However, the negative predictive value of ultrasonography in the high-probability patients was 82%. It is possible that serial testing would be equally safe in these patients but we think the false-negative rate is high enough to warrant venography. If venography is done it is important to be aware that interobserver reliability is less than ideal for distal deep-vein thrombosis and that the test is not infrequently inadequate in centres in which the technique is seldom used.15 We caution that, although the clinical model is not complex, the examining physician should use a check sheet to ensure it is followed properly.

We believe our model should be generalisable because of the high level of agreement between the study physicians and the research nurses who assisted with the study. The level of interobserver agreement is less than in our previous study,1 but nurses were compared with physicians in the current study. The least objective part of the model is the determination of whether there is an alternative diagnosis. Therefore, in cases in which it is unclear as to whether there is an alternative diagnosis, or when the model is used by an inexperienced observer, the assumption of no alternative diagnosis is likely to ensure the highest level of safety.

In conclusion, the combination of pretest probability with non-invasive diagnostic test results simplifies and improves the diagnostic process in patients with suspected deep-vein thrombosis, and will decrease costs.

Contributors
Philip S Wells and David R Anderson designed the study, co-ordinated the project, assisted with clinical care and recruitment of patients, analysed and interpreted the data, and drafted the manuscript. Janis Bormanis and K Sue Robinson assisted with the clinical care and recruitment of patients, and helped co-ordinate this study. Bernard Lewandowski, Fred Gray, and Michael Mitchell did the radiological tests, and helped co-ordinate the project. Lisa Gray and Cathy Clement helped co-ordinate the project, assisted with clinical care and recruitment of patients, and entered the study data into a computerised database. All authors contributed to writing the manuscript.

Acknowledgments
Funding for this study was provided by the Physician Services Incorporated Foundation and the Heart and Stroke Foundation of Nova Scotas, Canada. Philip Wells and David Anderson are the recipients of Research Scholarships from the Heart and Stroke Foundation of Canada.

References